A mechanistic understanding of plagioclase dissolution based on Al occupancy and T-O bond length: from geologic carbon sequestration to ambient conditions.
نویسندگان
چکیده
A quantitative description of how the bulk properties of aluminosilicates affect their dissolution kinetics is important in helping people understand the regulation of atmospheric CO2 concentration by silicate weathering and predict the fate and transport of geologically sequestered CO2 through brine-rock interactions. In this study, we employed a structure model based on the C1 space group to illustrate how differences in crystallographic properties of aluminosilicates, such as T-O (Tetrahedral site-Oxygen) bond length and Al/Si ordering, can result in quantifiable variations in mineral dissolution rates. The dissolution rates of plagioclases were measured under representative geologic carbon sequestration (GCS) conditions (90 °C, 100 atm of CO2, 1.0 M NaCl, and pH ∼ 3.1), and used to validate the model. We found that the logarithm of the characteristic time of the breakdown of Al-O-Si linkages in plagioclases follows a good linear relation with the mineral's aluminum content (nAl). The Si release rates of plagioclases can be calculated based on an assumption of dissolution congruency or on the regularity of Al/Si distribution in the constituent tetrahedra of the mineral. We further extended the application of our approach to scenarios where dissolution incongruency arises because of different linkage reactivities in the solid matrix, and compared the model predictions with published data. The application of our results enables a significant reduction of experimental work for determining the dissolution rates of structurally related aluminosilicates, given a reaction environment.
منابع مشابه
Evaluation of the impact of CO2, aqueous fluid, and reservoir rock interactions on the geologic sequestration of CO2, with special emphasis on economic implications
Lowering the costs of front-end processes in the geologic sequestration of CO2 can dramatically lower the overall costs. One approach is to sequester less-pure CO2 waste streams that are less expensive or require less energy to separate from flue gas, a coal gasification process, etc. The objective of this research is to evaluate the impacts of an impure CO2 waste stream on geologic sequestrati...
متن کاملSignificance of carbonate buffers in natural waters reacting with supercritical CO2: Implications for monitoring, measuring and verification (MMV) of geologic carbon sequestration
[1] Successful geologic sequestration of carbon in deep saline aquifers requires accurate predictive models of rock-brine-CO2 interaction. Often overlooked in siliciclastichosted saline reservoirs is the carbonate buffering of the groundwater. Carbonate minerals are ubiquitous, even in siliciclastic host rocks, resulting in some carbonate buffering. Geochemical modeling of rock-brine-CO2 system...
متن کاملInvestigating the effects of carbon sequestration project on livability of rural settlement
The carbon sequestration project has sought to increase the empowerment and livelihoods of indigenous peoples with the goal of mobilizing people and involving local communities in the conservation, restoration and exploitation of the principles of natural resources. Therefore, rural livelihood index is one of the most important and important factors used in measuring and evaluating the living c...
متن کاملPFLOTRAN: Massively Parallel 3D Simulator for CO2 Sequestration in Geologic Media
Geologic sequestration in depleted oil reservoirs, saline aquifers, etc. has been proposed as an effective way to stabilize the concentration of CO2 in the atmosphere and thus mitigate its effect on global climate change. We have developed a massively parallel 3-D reservoir simulator PFLOTRAN for modeling supercritical CO2 sequestration in geologic formations based on continuum scale mass and e...
متن کاملIdentifying Carbon Sequestration Hotspots in Semiarid Rangelands (Case study: Baghbazm region of Bardsir city, Kerman province)
Carbon sequestration in rangeland ecosystems has been identified as a suitable strategy to offset greenhouse gas emissions that information of carbon sequestration hotspots is a good tool to improve rangeland management. Objectives for this study were to assessment potential carbon sequestration in various rangeland types, to identify carbon sequestration hotspots and to study the effective fact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 42 شماره
صفحات -
تاریخ انتشار 2013